-
Il petrolio chiude in forte calo a New York a 67,21 dollari
-
Cervello invecchia? Causa è stallo in sintesi proteine cerebrali
-
>ANSA-LA-STORIA/ L'odissea di Gilzan, la migrante senza gambe
-
Il mio giorno preferito, in arrivo il nuovo singolo di Eros
-
Michela Miti, 'Mario Cecchi Gori mi fece avance e mi ostacolò'
-
F1: Ungheria, Norris il più veloce anche nelle seconde libere
-
Completato in Italia uno degli occhi del supertelescopio Elt
-
Tajani, sentenza della Corte Ue non convince, ha durata limitata
-
Lo spread tra Btp e Bund chiude in rialzo a 83,4 punti
-
Dalla pelle al cervello, svelato il circuito della temperatura
-
James Bond, dopo il regista c'è uno sceneggiatore
-
Borsa: in Europa Parigi -3%, giù rendimenti titoli stato Usa
-
Al Lido Matarrese porta il Carnage della sua famiglia
-
Iit apre in Valle d'Aosta, genomica contro tumore e Parkinson
-
Borsa: l'Europa conferma il rosso, Parigi cede il 2,25%
-
Zelensky, 'per la pace servono colloqui diretti con Putin'
-
Setak a Roseto con Angelini, 'musica vera, no a set precotti'
-
Baps,chiude cartolarizzazione con Jp Morgan su crediti a pmi
-
Usa, creati 73.000 posti di lavoro a luglio, sotto attese
-
F1: Ungheria; a Norris le prime libere, poi Piastri e Leclerc
-
Mondiali nuoto: Di Pietro in finale nei 50 farfalla donne
-
Negli Usa il fulmine più lungo, misura 829 chilometri
-
L'euro scende sotto 1,14 dollari, su minimi inizio giugno
-
Isi (Rfi), opera strategica alta velocità sull'Adriatica
-
Dardust, fuori l'ep "Urban Impressionism (Piano solo)"
-
Atletica: agli assoluti subito 12 titoli, in gara Battocletti
-
Joshua Redman a Roma, concerto alla Casa del Jazz
-
Caracalla Festival chiude con i Carmina Burana di Carl Orff
-
Mondiali nuoto:Ceccon in finale 100 farfalla con record italiano
-
West Nile, in E-R nel 2025 circolazione è più contenuta
-
Bitpanda, nel 2024 raddoppia i ricavi a 393 milioni di euro
-
Mondiali nuoto: Sara Curtis 8/a nella finale dei 100 stile
-
Sudafrica, corni rinoceronti 'radioattivi' contro i bracconieri
-
Piazza Affari scivola (-2%) con l'Europa, paura per i dazi
-
Siccità, dal 2002 le aree colpite sono aumentate ogni anno
-
Calcio: Lega B, 'Pablito' alla carriera a Schwoch
-
Pallavolo: la lista dei 25 per il Mondiale nelle Filippine
-
L'Upb ritocca le stime del Pil, +0,5% nel 2025 e 2026
-
Open Olympics, trasparenza di Milano Cortina ferma da 100 giorni
-
Morbillo, quasi un italiano su 10 è a rischio infezione
-
I viaggi mentali nel tempo ringiovaniscono i ricordi sbiaditi
-
Nursing Up, 'riforma accesso a medicina creerà disoccupati'
-
Calcio: Roma; fatta per Ghilardi, oggi a Roma per le visite
-
Friulia investe 5 milioni nella Caffaro per nuovo stabilimento
-
Gran Paradiso Film Festival, Stefano Accorsi alla serata finale
-
Sindacati, 'arrivare a contratto unico per lavoratori Rsa'
-
Consulti e sport al mare, a Cecina le 'Spiagge della salute'
-
Zelensky, '31 vittime nell'attacco russo di ieri a Kiev'
-
Premier Canada, 'deluso dai nuovi dazi Usa, reagiremo'
-
Saipem, completata con successo installazione pipeline Irpa
Diamanti: Chimica e Durezza
I diamanti non sono solo simboli di lusso e bellezza, ma anche meraviglie della scienza, noti per essere il materiale più duro conosciuto. Questo articolo esplora in dettaglio la loro chimica, le proprietà fisiche che li distinguono e le applicazioni che ne derivano, offrendo un’immersione tecnica nel mondo di questa straordinaria sostanza.
La struttura chimica dei diamanti
I diamanti sono formati esclusivamente da atomi di carbonio, lo stesso elemento presente nella grafite. Ciò che li rende unici è la loro struttura cristallina: ogni atomo di carbonio è legato a quattro altri atomi tramite legami covalenti, disposti in una configurazione tetraedrica. Questa rete tridimensionale, chiamata reticolo cristallino cubico, è responsabile della loro eccezionale durezza. I legami covalenti, tra i più forti in natura, si estendono uniformemente in tutte le direzioni, creando una struttura incredibilmente resistente e stabile.
Formazione naturale e sintetica
I diamanti naturali nascono nelle profondità del mantello terrestre, tra 150 e 300 chilometri sotto la superficie, dove temperature di 1.300-1.400°C e pressioni di circa 70 tonnellate per centimetro quadrato trasformano il carbonio in questa forma cristallina. Eruzioni vulcaniche trasportano poi i diamanti verso la superficie, incastonati in rocce chiamate kimberliti.
In laboratorio, i diamanti sintetici vengono prodotti con due tecniche principali. La deposizione chimica da vapore (CVD) utilizza gas ricchi di carbonio per far crescere diamanti strato dopo strato a partire da un seme, in una camera a vuoto. La sintesi ad alta pressione e alta temperatura (HPHT) replica invece le condizioni del mantello terrestre, trasformando il carbonio in diamante. Questi diamanti artificiali condividono le stesse proprietà chimiche e fisiche di quelli naturali, ma sono più accessibili e sostenibili.
Proprietà fisiche e durezza
Sulla scala di Mohs, i diamanti raggiungono il grado 10, il massimo livello di durezza. Questa caratteristica deriva dalla forza dei legami covalenti e dalla loro disposizione simmetrica. Oltre alla durezza, i diamanti vantano un’altissima conducibilità termica, che li rende ottimi dissipatori di calore, e un elevato indice di rifrazione, alla base della loro brillantezza. Sono inoltre resistenti agli agenti chimici e mostrano una dilatazione termica minima, simile a quella di materiali come l’invar.
Applicazioni scientifiche e industriali
Le proprietà dei diamanti li rendono indispensabili in molti settori. Nell’industria, sono impiegati in utensili da taglio, levigatura e perforazione, ideali per lavorare materiali duri come metalli e rocce grazie alla loro resistenza all’usura. In ambito scientifico, trovano applicazione in strumenti ottici e presse ad altissima pressione, utili per studiare le condizioni interne dei pianeti.
Un utilizzo innovativo riguarda i semiconduttori: alcuni diamanti, naturalmente conduttivi o drogati con impurità, possono trasportare elettricità, aprendo prospettive nell’elettronica ad alta potenza e nei dispositivi quantistici, come i computer del futuro.
Sfide e sviluppi futuri
Nonostante i loro punti di forza, i diamanti hanno limiti. A temperature elevate, reagiscono con il ferro, rendendoli inadatti a lavorare materiali ferrosi, e sopra gli 800°C si ossidano. Per superare queste criticità, si studiano alternative come il nitruro di boro cubico, più stabile termicamente. Inoltre, nuovi materiali teorici, come il pentadiamante o gli aggregati di nanotubi di carbonio, promettono di superare la durezza del diamante, con possibili impieghi in ambiti estremi.
Conclusione
I diamanti sono un connubio di natura e tecnologia, con una chimica unica che ne fa un materiale insostituibile. Le innovazioni nella loro sintesi e applicazione continuano a espanderne il potenziale, confermando il loro ruolo centrale nella scienza e nell’industria moderna.

Laser occhi: tre tecniche moderne

Dazi USA-Cina: lezioni storiche

Riciclo Tetra Pak: da latte a carta

Cookie: sì o no alla privacy?

Torre di Pisa: perché non cade?

MDMA: cosa fa al tuo corpo?

Svalbard: il bunker dei semi

A bordo del Castorone: i tubi del gas a 3000 metri

Dentro il bunker antiatomico più grande d’Italia

Trump: dai dazi all’UE alle ambizioni su Groenlandia

Terremoto in Myanmar: analisi geologica del sisma M7.7
